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Dramatis Personae

• This work is a continuation of work that many have contributed to. My thanks and 
acknowledgements to my Co-Authors for this talk below

• NERSC: Jack Deslippe, Thorsten Kurth (now NVIDIA), Doug Doerfler

• Kokkos Team: 

o Sandia National Labs: Christian R. Trott, Dan Ibanez, Dan Sunderland

o ORNL: Damien Lebrun-Grandie

o ALCF: Nevin Liber

• NVIDIA: Kate Clark
• Intel: Jeongnim Kim, Patrick Steinbrecher

• AMD: Nick Curtis, Rene van Oostrum
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Introduction/Recap from SC’19 P3HPC Workshop

• Lattice QCD codes need to be performance portable for the exascale

• Next set of pre-exascale and exascale systems all use different accelerators

o NERSC Perlmutter (NVIDIA GPUs) 

o ALCF Aurora (Intel Xe Accelerators) 

o OLCF Frontier (AMD GPUs)

• Many portable programming models available

o OpenMP, OpenACC, Kokkos, Raja, DPC++/SYCL, HIP, pSTL, …

• Need a “proof of non-death” to evaluate programing models for Lattice QCD codes

• We chose to implement a Wilson Dslash operator as a Mini-App

o Our choice was to look at Kokkos and DPC++/SYCL
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Wilson Dslash Operator in a nutshell
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• 4D nearest neighbor, covariant derivative operator
• 3x4 component complex ‘spinors’ on the lattice sites
• 3x3 complex matrices on the links
• (1 +/- γµ) are ‘spin projection’ operators
• Ideally can reuse 7 out of 8 neighbors from cache
• due to even-odd coloring: no reuse of links
• AI between 0.87-1.72 depending on neighbor reuse & RFOs
o Memory Bandwidth Bound on current accelerator 

architectures for reasonably large lattice



SIMD Vectorization

• Treat SIMD lanes as virtual node (VN) grid
• Layout (block-domains) lattice on VN grid 
• Local lattice per lane -> outer lattice
• Nearest-Neighbor access on local lattice boundary = 

access of neighboring lane’s data
o SIMD shuffle/permutation
o for 2logN VN grid (up to 16 lanes for 4D) can get 

neighbor’s lane-ID using bitwise XOR
o for more than 16 lanes, split into power of 2 sets of 

up to16, and different bitwise XORs needed for 
each set => use general permutation

• SIMD offers memory access benefits too 
o aligned/coalesced loads & stores

5

Vector Unit of Length N virtual node (VN) grid

Lay-out lattice over 
virtual node grid

Ascribe corresponding sites
from virt. node grid into

vector lanes

Virtual Node Vectorization 
(P. Boyle, e.g. in Grid, BFM)
e.g. arXiv:1512.03487[hep-lat]

outer
lattice

outer lattice
lanes

permute

permute

https://arxiv.org/abs/1512.03487


Performance Portability via Kokkos
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• Kokkos provides portability via back-
ends: e.g. OpenMP, CUDA, …

• Most abstractions are provided in a 
C++ Header library
o parallel_for, reduction, scans & more
o our work uses parallel_for

• Kokkos provides the Kokkos View 
data-type
o user can customize index order
o explicit memory movement only
o select memory space via policy

• Bind Execution to Execution Space
o select back end via policy

Kokkos Abstractions
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Portability via SYCL

7

Intel LLVM
OneAPI/DPCPP

Codeplay
ComputeCPP

HIP-
SYCL

SPIR/SPIRV

HD 
Graphics

FPGA

Intel OpenCL Drivers POCL Driver

Xeon
Server

NVIDIA
GPU

PTX

AMD
GPU

CUDA
driver

ROCm
driver

HIP

Other 
CPU

SPIR/SPI
RV

?

Consistency
in implementing

standard (?)

Manufacturers 
all have favorite

standards 

Codeplay
Backend

NEW!



Summary at the time of SC’19 P3HPC workshop

• Kokkos did well on all 
platforms. 
o CPU targets need a 

custom SIMD type
o Hand coded for AVX512
• SYCL/DPC++ did reasonably 

well 
o using Intel OpenCL 

runtime on SKX/Gen-9
o using Codeplay Compiler 

with POCL OpenCL on 
V100
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What is new

• Tested DPC++ Subgroup Extensions for SIMD
• Tested Codeplay CUDA Back End for Intel Public LLVM compiler
• Tested Kokkos HIP-backend
• Tested Kokkos OpenMP Offload
o Intel OneAPI ICPX implementation for Gen-9
o LLVM Clang-10 for NVIDIA-NVPTX back-end
o Cray-CCE v. 10.0.1 on NVIDIA back end
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Intel Subgroup Extensions (proposed)
• Similar to Warp/Wavefront level 

SIMD in CUDA/HIP

• Can get subgroup from nd_item<> 
index of work-item

• Single Load/Store per subgroup
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[[cl::intel_reqd_sub_group_size(VN::VecLen)]]
inline
void operator()(cl::sycl::nd_item<2> nd_idx) const {

// VN Grid site id.
size_t site = nd_idx.get_global_id(0);

// Get the subgroup that I am a part of
sycl::intel::sub_group sg = nd_idx.get_sub_group();

template<typename T, sycl::access::address_space Space>
inline  MGComplex< typename BaseType<T>::Type>
Load(size_t offset, const sycl::multi_ptr<T,Space> ptr, const sycl::intel::sub_group& sg)
{  

using TypeInMGComplex = typename BaseType<T>::Type;
sycl::vec<TypeInMGComplex,2> load_vec = sg.load<2,TypeInMGComplex,Space>(ptr + offset);
return MGComplex<TypeInMGComplex>(load_vec.s0(),load_vec.s1());

}

subgroup size
elements

offset in T’s

ptr
sg.load<2,…>()



Sub Group Permutations
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// Masks for SUBGROUP SIMD
static constexpr std::array<int,8> x_mask = {0,1,2,3,4,5,6,7};  // Mask array for element ‘i’        
static constexpr std::array<int,8> y_mask = {1,0,3,2,5,4,7,6};  // stores source lane for lane ‘i’
static constexpr std::array<int,8> z_mask = {2,3,0,1,6,7,4,5};  //
static constexpr std::array<int,8> t_mask = {4,5,6,7,0,1,2,3};  //

template<typename T, int N>
static inline MGComplex<T> permute(const std::array<int,N> mask,

const MGComplex<T>& in,
const sycl::intel::sub_group& sg)

{
MGComplex<T> ret_val;
ret_val.real( sg.shuffle( in.real(), mask[ sg.get_local_id()[0] ] ) );  // Look up source_id in mask[]
ret_val.imag( sg.shuffle( in.imag(), mask[ sg.get_local_id()[0] ] ) );  // sg.get_local_id() return ‘lane-id’
return ret_val;

}

template<> inline
MGComplex<float> Permute<float,8>::permute_xor_Y( const MGComplex<float>& in, 

const sycl::intel::sub_group& sg) {
return MGComplex<float>{ sg.shuffle_xor(in.real(), {1}),     

sg.shuffle_xor(in.imag(), {1}) } ;   // XOR mask is 0xb001, {} to init id<1>

Bitwise XOR Based

Generic



Preliminary Subgroup SIMD Results

• Tests used lattice with 324 sites, Intel OneAPI public beta=8 compiler (clang), Intel Iris Pro Graphics 580 
with 128MB EDRAM

• In these tests using subgroup based SIMD did not provide a benefit on Gen-9, best performance is 
naive V=1 case.

• Further investigation could be interesting as well as test on a Xeon part.
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DPC++ with CUDA Back End from Codeplay

• Lattice with 324 sites, dpc++/11.0.0-20200721 from Doug Doerfler on Cori GPU based on LLVM11
• Compiler built the plain SYCL code and the code ran fine
• Performance is not as good as Codeplay SYCL + POCL

• Compiler compiled code using subgroup extensions but had linking issues
o not really a surprise as I didn’t expect support for extensions
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Kokkos and OpenMP Target

• Good news: OpenMP Target for Kokkos is functional in several compilers

• Bad News: Currently, Out of the Box performance seems poor — may 
need specific optimization/tuning
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Kokkos with HIP Backend

• ORNL is working with AMD on a HIP Backend for Kokkos (led by Damien Lebrun-Grandie) 
• WilsonDslash mini-app over Kokkos compiles and runs with the HIP back end
• Performance was low, compared to expectations based on available memory bandwidth (1 

TB/s peak mem BW on MI50/MI60 devices)
• We went through a deep dive with Nick Curtis and Rene van Oostrum from AMD
o found: there seemed to be high register use, and low occupancy and some amount of 

register spilling going on
o changing out neighbor index calculations to table lookup made a considerable difference: 

reduced register count & spilling, increased performance by ~1.24x
o integer division appears to be expensive on MI50, possible to fix with libdivide ?
o Moral: cannot escape hardware, the algorithmic choice of computing the index of a 

neighbor or looking it up may not be performance portable => Allow for choice in 
implementation
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Conclusions & Future Work

• Considerable progress since SC’19 in compilers

o DPC++ with CUDA Back End now tested and working, Sub Group extension works in native back 
end.

o Kokkos tested with OpenMP-Target backend using several compilers

o Kokkos HIP backend is quite functional from point of view of Dslash Mini-App

• Performance is not uniformly good yet accross the board

o e.g. did not expect DPC++ with Subgroup SIMD to be outperformed by non SIMD code

o OpenMP Target performance may need to be tuned/investigated

• Future work: Kokkos has a public SIMD Type in https://github.com/kokkos/simd-math

o I have added a proposal for permutes in a private branch (PR#18)

o Still to integrate these into KokkosDslash

• Lessons learned:

o Fantastic that so many OpenMP implementations now compile and run

o Cannot escape hardware features (e.g. integer divisions etc).
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